Table I. Inhibition of PNMT by Ring-Substituted Amphetamines

					p	pI _{so}	
Substituent	E_{s-2}^{a}	$\Sigma \pi_{-2,3}{}^b$	$\Sigma \sigma$	D	Obsd ^c	Calcd ^d	\D p I 50
3,4-Cl ₂	1.24	0.71	0.60	0.00	5.10	4.70	0.40
3-C1	1.24	0.71	0.37	0.00	4.23	4.38	0.15
4-CF ₃	1.24	0.00	0.54	0.00	4.00	3.91	0.09
3,4-F ₂	1.24	0.14	0.40	0.00	3.85	3.85	0.00
3-F	1.24	0.14	0.34	0.00	3.75	3.77	0.02
4-C1	1.24	0.00	0.23	0.00	3.60	3.48	0.12
4- <i>i</i> -Pr	1.24	0.00	-0.15	0.00	3.30	2.94	0.36
3-Me	1.24	0.50	-0.07	0.00	3.17	3.55	0.38
4-Me	1.24	0.00	-0.17	0.00	3.14	2.91	0.23
4-F	1.24	0.00	0.06	0.00	3.01	3.24	0.23
Н	1.24	0.00	0.00	0.00	2.89	3.15	0.26
3,4-Me ₂	1.24	0.50	-0.24	0.00	2.85	3.31	0.46
4-OC ₆ H ₅	1.24	0.00	-0.32	0.00	2.76	2.70	0.06
4-OMe	1.24	0.00	-0.27	0.00	2.57	2.77	0.20
3-OMe	1.24	-0.02	0.12	1.00	2.07	2.29	0.22
3-OMe, 4-OEt	1.24	-0.02	-0.12	1.00	2.06	1.95	0.11
3,4-(OMe),	1.24	-0.02	-0.15	1.00	2.00	1.91	0.09
3-Br, 4-OH	1.24	0.86	0.02	0.00	4.15	4.03	0.12
3-C1, 4-OH	1.24	0.71	0.00	0.00	4.15	3.86	0.29
3,4-(OH) ₂ ^e	1.24	-0.67	-0.25	0.00	3.30	2.14	1.16
4-OH	1.24	0.00	-0.37	0.00	3.12	2.63	0.49
3-OH	1.24	-0.67	0.12	0.00	2.77	2.66	0.11
2,4-Cl ₂	0.27	0.71	0.45	0.00	4.02	4.02	0.00
2,5-F ₂	0.78	0.14	0.40	0.00	3.48	3.63	0.15
2,6-Cl ₂	-0.70	0.71	0.45	0.00	3.47	3.55	0.08
2-Me	0.00	0.50	-0.17	0.00	3.25	2.81	0.44
2-C1	0.27	0.71	0.23	0.00	3.24	3.71	0.47
2-F	0.78	0.14	0.06	0.00	3.17	3.15	0.02
2,4-F ₂	0.78	0.14	0.12	0.00	3.08	3.24	0.16
2.4-Me.	0.00	0.50	-0.34	0.00	2.85	2.57	0.28
2,5-Me,	0.00	0.50	-0.24	0.00	2.83	2.71	0.12
2,3-(OMe),	0.69	-0.04	-0.15	1.00	1.65	1.62	0.03
$2,4-(OMe)_{2}$	0.69	-0.02	-0.54	0.00	1.51	2.11	0.60

^aSee reference 3. $^{b}\pi$ values are from the benzene system; see reference 4. c From reference 2. d Calcd using eq 3. e This point not used in deriving eq 3.

Baker's bulk tolerance principle⁵) should then be placed in the 3 position. For example, if bulk tolerance would allow the use of a 3-Bu function, the 4-NO₂-3-Bu derivative would be more potent than any of the inhibitors of Table I. The predicted pI_{50} is 6.1. If a group as large as hexyl could be accommodated in the 3 position, pI_{50} would be 7.1.

For in vivo work $\log P_o$ would set a lower limit on total lipophilic character. Under these conditions the 4-SO₂CH₃ function could be used to balance a 3-Bu or 3-Hex function.

The coefficient with the $\pi_{-2,3}$ term is not uncommon for enzymic hydrophobic bonding.^{6,7} The rather large coefficient with the σ term indicates that activity is highly dependent on electron withdrawal by substituents. This might well indicate that an electron-deficient inhibitor benzene ring is interacting with an electron-rich site in the enzyme. The high negative coefficient with D indicates an inexplicable deleterious effect of a 3-MeO function.

References

- C. Hansch, E. W. Deutsch, and R. Nelson Smith, J. Amer. Chem. Soc., 87, 2738 (1965).
- (2) R. W. Fuller, J. Mills, and M. M. Marsh, J. Med. Chem., 14, 322 (1971).
- (3) E. Kutter and C. Hansch, J. Med. Chem., 12, 647 (1969).
- (4) T. Fujita, J. Iwasa, and C. Hansch, J. Amer. Chem. Soc., 86, 5175 (1964).
- (5) B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme Inhibitors," Wiley, New York, N. Y., 1967.
- (6) C. Hansch and E. Coats, J. Pharm. Sci., 59, 731 (1970).
- H. J. Schaeffer, R. N. Johnson, E. Odin, and C. Hansch, J. Med. Chem., 13, 452 (1970).

N^1 , N^1 -Dialkyl- N^4 , N^4 -dialkylaminoacetylsulfanilamide as Potent Surface Anesthetics

I. Lalezari,* A. Shafiee,

Department of Chemistry, Faculty of Pharmacy, University of Teheran, Iran

M. A. Khoyi, and F. Abtahi

Department of Experimental Medicine and Pharmacology, Faculty of Medicine, University of Teheran, Iran. Received July 7, 1971

In a previous communication, we reported the synthesis and potent local anesthetic activity of sulfamoylbenzoic acid ester derivatives of low toxicity. In the present work, we report the synthesis and surface anesthetic activity of a new series of compounds: N^1, N^1 -dialkyl- N^4, N^4 -dialkylaminoacetylsulfanilamide.

Scheme I

$$R_1$$
 NSO_2
 NH_2
 $CICH_2COCI$
 R_3
 NSO_2
 $NHCOCH_2CI$
 R_3
 NSO_2
 $NHCOCH_2N$
 R_3
 R_1
 R_2
 NSO_2
 $NHCOCH_2N$
 R_3
 R_4

NHCOCH₂Cl R, Mp, °C Yield, % Formula^a CH. 120b CH. 78 C10H13CIN2O3S 113^c 76 C2H, C₂H C₁₂H₁₇ClN₂O₃S 119^{b} n-C₃H₇ n-C₃H₇ 82 C14H21CIN2O3S 123^b C16H25CIN2O3S 73 n-C4H 157^{b} (CH₂)₄ 86 C₁₂H₁₅ClN₂O₃S 136^c C₁₃H₁₇CIN₂O₃S (CH₂)₅71 147^b C₁₂H₁₅CIN₂O₄S O(CH₂CH₂)₂ 80

^aAll compds were anlyzed for C, H, and the results were satisfactory. Similarly ir and nmr spectra were as expected. ^bRecrystd from EtOAc. ^cRecrystd from EtOAc-petr ether.

tivity. However, the same compounds with a morpholine residue on the acetamide group were not active. In guinea pigs, as contrasted with rabbits, 14 and 19 were ineffective. All potent compounds caused conjunctival congestion in the first hour, and slight opalescence of the cornea, especially in guinea pigs, was present 48 hr after instillation.

Experimental Section†

 N^1 , N^1 -Dialkyl- N^4 , N^4 -chloroacetamidosulfanilamide. To a soln of 0.1 mole of N^1 , N^1 -dialkylsulfanilamides, prepd by known methods, in 50 ml of glacial AcOH, was added dropwise 12.43 g (0.11 mole) of ClCH₂COCl at room temp during 1 hr. The mixt was stirred for an addl 1 hr and then was poured into cold H₂O. The ppt was filtered, dried, and recrystd from AcOEt or AcOEt-petr ether (see Table I).

 N^1 , N^1 -Dialkyl- N^4 , N^4 -dialkylaminoacetylsulfanilamide. A soln of 0.01 mole of N^1 , N^1 -dialkyl- N^4 , N^4 -chloroacetamidosulfanilamide and 0.025 mole of the appropriate amine in 10 ml of dry C_6H_6 , was

Table II

						Mp, °C		
Compd	R_{i}	R_2	R_3	R_4	Yield, %	Base	HC1	Formula a
1	CH ₃	CH ₃	CH ₃	CH ₃	76	107	251	C ₁₂ H ₂₀ ClN ₃ O ₃ S
2	CH ₃	CH ₃	C_2H_5	C_2H_s	82	84	219	$C_{14}H_{24}CIN_3O_3S$
2 3 4	CH ₃	CH ₃	(CH ₂) ₄		79	151	260	$C_{14}H_{22}CIN_3O_3S$
4	CH ₃	CH ₃	$(CH_2)_5$		69		249	$C_{15}H_{24}CIN_3O_3S$
5	CH ₃	CH₃	O(CH ₂ C	$CH_2)_2$	85	194	223	$C_{14}H_{22}CIN_3O_4S$
6 7	C_2H_5	C_2H_5	CH ₃	CH ₃	81	102	209	$C_{14}H_{24}CIN_3O_3S$
7	C_2H_5	C_2H_5	C_2H_5	C_2H_5	82	77	203	$C_{16}H_{28}CIN_3O_3S$
8	C_2H_5	C_2H_5	(CH ₂) ₄		79	104	202	C, H, CIN, O, S
9	C_2H_5	C_2H_5	$(CH_2)_5$		80	120	179	C, H, ClN, O, S
10	C_2H_5	C_2H_5	O(CH ₂ C	CH ₂),	73	97	212	$C_{16}H_{26}ClN_3O_4S$
11	n - C_3H_7	n - C_3H_7	CH ₃	CH ₃	77		217	$C_{16}H_{28}CIN_3O_3S$
1 2	n - C_3H_7	n -C $_3$ H $_7$	C_2H_5	C_2H_5	81		191	C ₁₈ H ₃₂ ClN ₃ O ₃ S
13	n - C_3H_7	$n-C_3H_7$	(CH ₂) ₄		79	69	182	$C_{18}H_{30}ClN_3O_3S$
14	$n-C_3H_7$	$n-C_3H_7$	$(CH_2)_5$		68	99	189	$C_{19}H_{32}CIN_3O_3S$
15	$n-C_3H_7$	$n-C_3H_7$	O(CH ₂ C	$CH_2)_2$	80	120	181	$C_{18}H_{30}CIN_3O_4S$
16	$n-C_4H_9$	$n-C_4H_9$	CH ₃	CH ₃	86		226	$C_{18}H_{32}CIN_3O_3S$
17	n - C_4H_9	$n-C_4H_9$	C_2H_5	C₂H,	83		173	C20H36ClN2O2S
18	$n-C_4H_9$	$n-C_4H_9$	(CH ₂) ₄		79		178	CaaHaaCINaOaS
19	$n-C_4H_9$	$n-C_4H_9$	$(CH_2)_5$		71		163	$C_{21}^{21}H_{36}CIN_{3}O_{3}S$
20	n-C ₄ H ₉	n-C₄H₀	O(CH ₂ C	$(CH_2)_2$	80	93	125	$C_{20}H_{34}CIN_3O_4S$
2 1		CH ₂) ₄	CH,	CH ₃	79	102	265	$C_{14}H_{22}CIN_3O_3S$
22	(CH ₂) ₄	C_2H_5	C₂H,	85	132	234	$C_{16}^{14}H_{26}^{22}CIN_3O_3S$
23	($(CH_2)_4$	(CH ₂) ₄		79	150	260	$C_{16}H_{24}CIN_3O_3S$
24	(CH ₂) ₄	(CH ₂) ₅		75	152	249	$C_{17}H_{26}CIN_3O_3S$
25	ĺ	CH ₂) ₄	O(CH ₂ C	CH ₂),	72		262	$C_{16}H_{24}CIN_3O_4S$
26	Ò	$(CH_2)_5$	CH ₃	CH ₃	77	113	217	$C_{15}H_{24}CIN_3O_3S$
27	Ò	CH_2),	C_2H_s	C₂H [°] ₅	69	110	205	C.,H,,ClN,O,S
28	Ò	$(CH_2)_5$	(CH ₂) ₄	2 3	72	150	235	$C_{17}H_{26}CIN_3O_3S$
2 9	Ò	$CH_2)_5$	$(CH_2)_5$		77	149	145	$C_{18}H_{28}CIN_3O_3S$
30	Ò	CH ₂) ₅	O(CH ₂ C	CH.).	68	187	226	$C_{17}H_{26}CIN_3O_4S$
31	à	$O(CH_2CH_2)_2$	CH ₃	CH ₃	70	116	229	$C_{14}H_{22}CIN_3O_4S$
3 2		$O(CH_2CH_2)_2$	C_2H_5	C_2H_5	71	98	218	$C_{16}H_{26}CIN_3O_4S$
33		$O(CH_2CH_2)_2$	(CH ₂) ₄	25	82	139	247	C ₁₆ H ₂₄ ClN ₃ O ₄ S
34		O(CH ₂ CH ₂) ₂	$(CH_2)_5$		66	160	210	$C_{17}H_{26}CIN_3O_4S$
35		$O(CH_2CH_2)_2$	O(CH ₂ C	$(H_2)_2$	73	201	224	$C_{16}H_{24}CIN_3O_5S$

^aAll compds were analyzed for C, H, and the results were satisfactory. Similarly ir and nmr spectra were as expected.

The general route of the synthesis is shown in Scheme I. In the case of N^1 , N^1 -dipropyl- N^4 , N^4 -dialkylaminoacetylsulfanilamide, the starting N^1 , N^1 -dipropylsulfanilamide was prepared by Curtius rearrangement of the appropriate benzoyl azide. The physical data of all compounds prepared are summarized in Tables I and II.

Pharmacology. All compounds were screened for surface anesthetic activity. The results for potent compounds are summarized in Table III. Among the compounds synthesized, those having di-n-propylsulfamoyl, or di-n-butyl-sulfamoyl groups were found to have surface anesthetic ac-

refluxed for 2 hr. The ppt formed was filtered and proved to be the starting dialkylamine · HCl. The filtrate was evapd and the residue was crystd (see Table II). The free amine, dissolved in EtOH, was converted to the corresponding hydrochloride in Et₂O soln (see Table II).

Acknowledgment. The authors are grateful to Dr. M. L. Smith of the Central Treaty Organization for providing

[†]Melting points were taken on a Kofler hot stage microscope and are uncorrected. The ir spectra were detd with a Leitz Model III spectrograph (KBr). Nmr spectra were obtd on a Varian A60A instrument (Me_a Si).

Table IIIa

	Concn, %	Rabbit cor	nea	Guinea pig cornea		
Compd		Potency	Duration	Potency	Duration	
11	1	0.46 (0.37-0.56)	0-23	0.25 (0.17-0.33)	0-14	
1 2	1	0.96 (0.93-1.00)	24-33	0.92 (0.86-0.97)	16-39	
	0.50	0.37 (0.28-0.46)	8-12	0.39 (0.29-0.48)	0-13	
13	1	0.99 (0.97-1.00)	11-36	0.97 (0.94-1.00)	15-33	
_ _	0.50	0.44 (0.34-0.53)	4-15	0.80 (0.72-0.87)	9-18	
14	1	1.00	24-63	0.07 (0.02-0.12)	0–6	
	0.50	0.95 (0.91-0.99)	16-30	0.00		
16	1	1.00	18-69	0.90 (0.84-0.96)	16-27	
	0.50	0.70 (0.61-0.79)	8-27	0.78 (0.70-0.86)	11-18	
	0.25	0.17 (0.09-0.24)	0-9	0.09 (0.04-0.15)	0-4	
17	1	0.88 (0.81-0.94)	16-29	0.29 (0.20-0.38)	0-28	
18	1	1.00	27-156	0.96 (0.93-1.00)	57-143	
	0.50	0.96 (0.92-1.00)	17-51	0.87 (0.81-0.93)	18-63	
	0.25	0.50 (0.40-0.60)	0-17	0.12 (0.06-0.18)	0-9	
19	1	0.96 (0.93-1.00)	69-111	0.00		
	0.50	0.87 (0.80-0.94)	17-39	0.00		
	0.25	0.13 (0.07-0.20)	0-7	0.00		
Cocaine	1	0.95 (0.92-0.98)	16-24	0.61 (0.52-0.70)	8-21	
	0.50	0.54 (0.46-0.62)	7-15	0.55 (0.45-0.64)	4-18	
	0.25	0.13 (0.08-0.18)	2-6	0.09 (0.04-0.15)	0-5	

^aSurface anesthesia was tested according to the method of Chance and Lobstein,² and the anesthetic potency was calcd for the first 18 min.³ A potency of 1.00 indicates an onset of anesthesia in 1 min and a duration of at least 18 min.

essential materials. Technical assistance by Miss S. Levtov and Mrs. A. Ramazani is gratefully acknowledged.

References

- N. Sharghi, I. Lalezari, G. Niloofari, and H. Golgolab, J. Med. Chem., 12, 696 (1969).
- (2) M. R. A. Chance and H. J. Lobstein, J. Pharmacol. Exp. Ther., 82, 203 (1944).
- (3) A. H. Campbell, J. A. Stasse, G. H. Lord, and J. E. Willson, J. Pharm. Sci., 57, 2045 (1968).

Synthesis and Antibacterial Activity of 5-Nitro-2-furfurylidene Arylthioacethydrazides and 5-Nitro-2-furfurylidene Arylsulfonylacethydrazides

I. Lalezari,* P. Lowlavar,

Department of Chemistry, Faculty of Pharmacy, University of Tehran, Tehran, Iran

and N. Mazhari

Quality Control Department, S. S. Pfizer Laboratories, P. O. Box 725, Tehran, Iran. Received June 21, 1971

In the course of studies on new antibacterial compounds based on nitrofuran, we have synthesized and screened the title compounds.

Arylthioacetic acid ethyl esters prepared by known methods were treated with hydrazine hydrate to give arylthioacethydrazides. Arylsulfonacethydrazides were prepared similarly from the corresponding arylsulfonylacetic acid ethyl esters. The acethydrazides reacted with 5-nitro-2-furaldehyde afforded the appropriate 5-nitro-2-furfurylidene acethydrazides I and II (see Table II).

SCH₂CONHN=CH
$$O$$
 NO₂

I, X_{I} = H, m-F, p-CH₃O, o-CF₃, m-CF₃, m-NO₂

SO₂CH₂CONHN=CH
$$O$$
 NO₂

II, $X_{II} = H, m\text{-F}, p\text{-F}, o\text{-Cl}, p\text{-Cl}, o\text{-CH}_3O, m\text{-CF}_3, m\text{-NO}_2, p\text{-NO}_2$

New acethydrazides prepared are tabulated in Table I. Biological Evaluation. Compounds listed in Table II were tested against various Gram-positive and Gram-negative bacteria. Furazolidone was used as a control. The compounds were dissolved in Me₂CO and diluted with H₂O to give a concentration of 250 μ /ml. Paper disks of 9-mm diameter were immersed in the prepared solutions and put on the inoculated penicillin assay seed agar surface.

All compounds were inactive against Bacillus pyocyaneus and Streptococcus β-hemolyticus at the test concentrations. Compounds 13, 15, 20, and 21 showed slight activities against Bordetella bronchiseptica ATCC 4617. Compound 21 showed a hazy inhibition zone with an average value of 12.8 mm against Proteus vulgaris. Furazolidone was inactive against the 4 mentioned organisms. The antibacterial activities of the compounds prepared are listed in Table III.

Table I

ArCH ₂ CONHNH ₂							
Compd	Ar	Mp,°C	Yield, %	Formula ^a			
1	C ₆ H ₅ SO ₂	130	68	C ₈ H ₁₀ N ₂ O ₃ S			
2	m-FC ₆ H ₄ S ^b	63	78	C ₈ H ₉ FN ₂ OS			
3	m -FC $_{6}^{\circ}$ H $_{4}^{\circ}$ SO $_{2}$	93	59	C ₈ H ₉ FN ₂ O ₃ S			
4	p-FC ₆ H ₄ SO ₂	142	61	$C_8H_9FN_2O_3S$			
5	o-ClC ₆ H ₄ SO ₂	160	64	C ₈ H ₉ ClN ₂ O ₃ S			
6	p-ClC ₆ H ₄ SO ₂	156	73	C ₈ H ₉ ClN ₂ O ₃ S			
7	m-CF ₃ C ₆ H ₄ S	68	72	C ₂ H ₂ F ₃ N ₂ OS			
8	m-CF ₂ C ₅ H ₄ SO ₂	133	61	$C_9H_9F_3N_2O_3S$			
9	m-NO ₂ C ₆ H ₄ S	80	74	$C_8H_9N_3O_3S$			
10	m-NO ₂ C ₆ H ₄ SO ₂	155	76	$C_8H_9N_3O_5S$			
11	$p-NO_2C_6H_4SO_2$	185	66	$C_8H_9N_3O_5S$			

^aAll compounds were analyzed for C, H, and the results were satisfactory. Similarly ir, nmr, and mass spectra support the structure assignments. ^bThe corresponding ester was prepared according to reference 1.